Методы проверки тиристоров на исправность

Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.

Разнообразные тиристоры

Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:

  1. Высокая проводимость (открытое).
  2. Низкая проводимость (закрытое).

Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.

Чтобы приключаться между состояниями, используется специальная технология, которая передает сигналы. С помощью сигнала от объекта управления, тиристор станет в положении высокой проводимости (открытое), а для того чтобы его выключить нужно заряженный конденсатор соединить с ключом.

Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т.д.

Самые известные типы данных устройств:

  • Диодный. Переходит в проводящий режим, когда уровень тока повышается.
  • Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
  • Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
  • Оптотиристор. Работает благодаря потоку света.
  • Запираемые.

Применение тиристоров

Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.

Общее применение делится на четыре группы:

  • ТимисторЭкспериментальные устройства.
  • Пороговые устройства.
  • Силовые ключи.
  • Подключение постоянного тока.

Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.

Вот некоторые характеристики данного тиристора:

  • Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
  • Напряжение в положении низкой проводимости 100 В.
  • Импульс в состоянии высокой проводимости – 30 А.
  • Повторный импульс в этом же положении – 10 А.
  • Постоянное напряжение 7 В.
  • Обратный ток – 4 мА
  • Ток постоянного типа – 200 мА.
  • Среднее напряжение -1,5 В.
  • Время включения – 10мкс.
  • Выключение – 100 мкс.

Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.

Тиристоры быстродействующие ТБ333-250

Тиристоры быстродействующие ТБ333-250

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.

Проверка тимистроа с помощью лампочки и батарейки

При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Проверка мультиметром

Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.

Что нужно, чтобы проверить тиристор мультиметром:

  1. Подцепить черный щуп с минусом к катоду.
  2. Подцепить красный щуп с плюсом к аноду.
  3. Один конец выключателя соединить с разъемом красного щупа.
  4. Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
  5. Быстро включить и отключить выключатель.
  6. Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
  7. В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
  8. Если перекидывание щупов не помогло, то тиристор неисправен.

Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.

Проверка тимистора мультиметром

Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели

Другие варианты проверки

Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.

Чтобы проверить устройство тестером нужно следовать следующей схеме:

  • Проверка тимистора с помощью омметра

    Проверка тимистора с помощью омметра

    Включить тестер между катодом и анодом: должно показать «бесконечность», потому что тиристор в состоянии низкой проводимости.
  • Подключить батарейку между УЭ и катодом. На тестере должно спасть сопротивление, так как появилась проводимость.
  • Если подачи питания совсем нет, то устройство работает неправильно.
  • Если подача питания постоянная, при любом напряжении на электроды, то и в этом случае с тиристором что-то не так.

Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:

  • Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
  • Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.

Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).

Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.

Блиц-советы

Рекомендации:

  1. Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
  2. Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
  3. Во избежание неприятных ситуаций все схемы должны собираться в точности.
  4. В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.

Защита тиристора:

Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.

1 Star2 Stars3 Stars4 Stars5 Stars 0,00, (оценок: 0)
Загрузка...
Понравилась статья? Поделиться с друзьями:
Добавить комментарий